Reducing the Training Samples for Damage Detection of Existing Buildings through Self-Space Approximation Techniques

Author:

Barontini AlbertoORCID,Masciotta Maria GiovannaORCID,Amado-Mendes Paulo,Ramos Luís F.,Lourenço Paulo B.ORCID

Abstract

Data-driven methodologies are among the most effective tools for damage detection of complex existing buildings, such as heritage structures. Indeed, the historical evolution and actual behaviour of these assets are often unknown, no physical models are available, and the assessment must be performed only based on the tracking of a set of damage-sensitive features. Selecting the most representative state indicators to monitor and sampling them with an adequate number of records are therefore essential tasks to guarantee the successful performance of the damage detection strategy. Despite their relevance, these aspects have been frequently taken for granted and little attention has been paid to them by the scientific community working in the field of Structural Health Monitoring. The present paper aims to fill this gap by proposing a multistep strategy to drive the selection of meaningful pairs of correlated features in order to support the damage detection as a one-class classification problem. Numerical methods to reduce the number of necessary acquisitions and estimate the performance of approximation techniques are also provided. The analyses carried out to test and validate the proposed strategy exploit a dense dataset collected during the long-term monitoring of an outstanding heritage structure, i.e., the Church of ‘Santa Maria de Belém’ in Lisbon.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference64 articles.

1. Current Challenges with BIGDATA Analytics in Structural Health Monitoring BT;Gulgec,2017

2. 1-Introduction to sensing for structural performance assessment and health monitoring;Wang,2014

3. Structural Health Monitoring as a Big-Data Problem

4. 3D data management: Controlling data volume, velocity and variety;Laney;META Group Res. Note,2001

5. Big Data for Development: A Review of Promises and Challenges

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3