An Energy-Friendly Scheduler for Edge Computing Systems

Author:

Llorens-Carrodeguas AlejandroORCID,G. Sagkriotis StefanosORCID,Cervelló-Pastor CristinaORCID,P. Pezaros DimitriosORCID

Abstract

The deployment of modern applications, like massive Internet of Things (IoT), poses a combination of challenges that service providers need to overcome: high availability of the offered services, low latency, and low energy consumption. To overcome these challenges, service providers have been placing computing infrastructure close to the end users, at the edge of the network. In this vein, single board computer (SBC) clusters have gained attention due to their low cost, low energy consumption, and easy programmability. A subset of IoT applications requires the deployment of battery-powered SBCs, or clusters thereof. More recently, the deployment of services on SBC clusters has been automated through the use of containers. The management of these containers is performed by orchestration platforms, like Kubernetes. However, orchestration platforms do not consider remaining energy levels for their placement decisions and therefore are not optimized for energy-constrained environments. In this study, we propose a scheduler that is optimised for energy-constrained SBC clusters and operates within Kubernetes. Through comparison with the available schedulers we achieved 23% fewer event rejections, 83% less deadline violations, and approximately a 59% reduction of the consumed energy throughout the cluster.

Funder

Agencia Estatal de Investigación of Spain

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Scheduling of Energy-Constrained Tasks in Internet of Things Edge Computing Networks;International Journal of Swarm Intelligence Research;2024-08-07

2. DQN-based intelligent controller for multiple edge domains;Journal of Network and Computer Applications;2023-09

3. EIS: Edge Information-Aware Scheduler for Containerized IoT Applications;2023 IEEE International Conference on Edge Computing and Communications (EDGE);2023-07

4. Green Orchestration of Cloud-Edge Applications: State of the Art and Open Challenges;2023 IEEE International Conference on Service-Oriented System Engineering (SOSE);2023-07

5. HRRMLQ: Container scheduling algorithm on edge nodes cluster;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3