Numerical Study of Endwall Modification with Micro-Scale Ribs in a Turbine Cascade

Author:

Liu Zhao1,Song Yu1,Lu Yixuan1,Zhang Weixin1,Feng Zhenping1ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

A novel modification method, the ‘micro-scale’ rib, is proposed to expand cooling coverage for turbine endwalls. However, the introduction of the rib will inevitably affect the flow in the near-wall region. Therefore, the variation in the flow pattern for the traditional model of secondary flow needs further exploration. In this paper, to gain a clearer understanding of the micro-scale rib, the original endwall and three types of ribbed endwalls were adopted to numerically present the detailed flow, film cooling, and heat transfer information for the endwall surface and phantom cooling on the suction side (SS) of the blade. The Ansys code CFX was utilized to solve the 3D Reynolds-averaged Navier–Stokes (RANS) equations, and the SST k-ω was selected as the turbulence model after the verification. The results show that the rib-like vortex changed the flow of the coolant and had various impacts on the cooling characteristics. Although the cooling performance of the ribbed endwall improved, it also had a negative impact on heat transfer in most cases. Compared with the original, the vertical rib cases provided optimal film cooling, with increases of 26.9% and 17.4% for rib spacing values of 8 mm and 10 mm, respectively, with little difference in heat transfer (less than 1%). In addition, the horizontal rib cases presented the worse performance for both film cooling and heat transfer, which indicates that the rib layout should consider a mainstream flow direction for future designs.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3