Integrated Dynamic Model for Numerical Modeling of Complex Landslides: From Progressive Sliding to Rapid Avalanche

Author:

Qiao Cheng1ORCID,Wang Chunrong1

Affiliation:

1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

Abstract

Landslides are one of the most common catastrophic mass flows in mountainous areas. The occurrence of fragmentation leads to the evolution of the integrity and stiffness of the sliding mass. The changes in internal composition caused by basal erosion and entrainment make the dynamic evolution of landslides more complex. To consider these complex processes, physics-based dynamic models are often used to analyze the dynamic characteristics of landslides. However, the proprietary assumptions of dynamic models often limit their application to complex events. A single dynamic model is often not competent for the analysis of landslides with evolving dynamic characteristics. In this study, two dynamic models are effectively integrated according to the evolving characteristics of the landslide. The common effects of basal erosion and entrainment are also considered. The maximum sliding velocity, accumulation range, and erosion depth characteristics of this integrated dynamic model are more consistent with the field than those of the single dynamic model. Under the terrain conditions of this study, within a few seconds of the triggering stage, if the occurrence of disintegration is advanced by 2 s, the maximum impact area will increase by about 3.1% to 4.1%, and the maximum kinetic energy will increase by more than 20%. Simulation results indicate that the changes in the integrity of the landslide body significantly affect the evolution of subsequent landslide dynamic characteristics.

Funder

Anhui Provincial Natural Science Foundation

Natural Science Research Project of Anhui Educational Committee

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology

Graduate Innovation Foundation of Anhui University of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3