Optimization of Structural Parameters of Venturi Vertical Cooling Furnace

Author:

Li Haifeng12ORCID,Qi Tengfei2,Zhang Yongjie2

Affiliation:

1. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China

2. School of Metallurgy, Northeastern University, Shenyang 110819, China

Abstract

Theoretically, the vertical sinter sensible heat recovery process can significantly improve the recovery rate of sinter sensible heat. However, the segregated distribution of the sinter and uneven gas–solid flow in vertical cooling furnaces result in insufficient contact and heat exchange between the high-temperature sinter and the cooling gas, thereby limiting the improvement in the sinter sensible heat recovery rate. A Venturi vertical cooling furnace can improve the contact heat transfer between gases and solids and the uniformity of the sinter and the cooling gas temperature. However, this leads to a significant increase in the gas pressure drop and affects the integrity of the downward movement of the sinter. To control the increase in the gas pressure drop while increasing the sensible heat recovery and maintaining the integral flow of the sinter, this study takes a Meishan Steel vertical cooling furnace as the research object and uses the DEM-CFD coupling model to optimize the structural parameters of the Venturi-type vertical cooling furnace. Firstly, a scaling method was designed to reduce the computational cost. Secondly, based on the on-site conditions, the selection range of structural parameters for the Venturi furnace was determined. Finally, an orthogonal experiment was designed. Taking the sensible heat recovery of the sinter and the pressure drop of the cooling gas as the main index, the integrity of the sinter flow was taken as the secondary index to study the Venturi structure parameters suitable for the Meishan Steel vertical cooling furnace, including the width of the vertical part w, the length of the vertical part l, the contraction angle of the contraction part β, and the expansion angle of the expansion part α. The results showed that the order of structural parameters affecting the sensible heat recovery was w, β, α, and l, and the order of parameters affecting the gas pressure drop was w, β, l, and α. The appropriate structural parameters of the Venturi furnace type, obtained by considering the sensible heat recovery and gas pressure drop, were w = 1.1 m, β = 16°, α = 13°, and l = 0.5 m. In addition, in order to improve the integrity of the sinter flow, it was also necessary to increase the wall friction of the particles in the central area of the vertical section by adding steel plates. The results can provide theoretical guidance for improvements to the Meishan Steel vertical cooling furnace. The operation parameters corresponding to the Venturi furnace type can be studied later.

Funder

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3