Optimization of Data-Driven Soil Temperature Forecast—The First Model in Bangladesh

Author:

Das Lipon Chandra12ORCID,Zhang Zhihua1ORCID,Crabbe M. James C.3ORCID

Affiliation:

1. School of Mathematics, Shandong University, Jinan 250100, China

2. Department of Mathematics, University of Chittagong, Chittagong 4331, Bangladesh

3. Wolfson College, Oxford University, Oxford OX1 1NQ, UK

Abstract

Soil temperature patterns are of great importance for any agro-based economy like Bangladesh since they significantly affect biological, chemical, and physical processes that take place in the soil. Unfortunately, there have been no forecast studies on soil temperature in Bangladesh until now. In this article, we used five tree-based models (decision tree, random forest, gradient boosting tree, a hybrid of decision tree and gradient boosting tree, and a hybrid of random forest and gradient boosting tree) to mine strong links among different meteorological factors and soil temperature at different time window sizes. We found that a hybrid of random forest and gradient boosting tree with all the meteorological factors and a five-day time window is optimal for forecasting soil temperature at depths of 10 cm and 30 cm for all lead times (one, three, or five days), whereas the random forest with the same input scenario and time window is optimal for forecasting soil temperature at a depth of 50 cm for long lead times (five days). Since our study includes the first soil temperature forecast model in Bangladesh, it provides valuable insights for agricultural soil management, fertilizer application, and water resource optimization in Bangladesh, as well as in other South Asian countries that share the same climate patterns as Bangladesh.

Funder

European Commission Horizon 2020 Framework Program

Taishan Distinguished Professor Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3