Study of the Effect of Water Content in Deep Eutectic Phases on the Extraction of Fatty Acids from Microalgae Biomass

Author:

García-Soto Pedro A.1ORCID,Saavedra de Santiago María I.1ORCID,Salar-García María J.1,Sánchez-Segado Sergio1,Ortiz-Martínez Víctor M.1ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, Technical University of Cartagena, C/Dr. Fleming s/n, 30202 Cartagena, Spain

Abstract

Microalgae, as some of the oldest life forms on Earth, are of significant interest to industry and in terms of environmental policies, due to their ability to perform photosynthesis and consume atmospheric carbon dioxide. Moreover, they contain a wide variety of value-added compounds such as amino acids and proteins, carbohydrates, and fatty acids, which can be exploited in multiple fields like medicine, cosmetics, nutritional supplements, and for the production of biodiesel. In this article, Nannochloropsis gaditana, a type of microalgae that inhabits both fresh and salt water, is studied for fatty acid recovery using deep eutectic solvents (DES). This microalgae species is a natural source of eicosapentaenoic acid (EPA), an omega-3 compound that is commonly used in the nutritional industry. There are numerous extraction techniques and pretreatments to obtain these compounds. In this work, DES are studied as extractive agents due to their advantages as neoteric solvents. Specifically, this work focuses on an assessment of the effect of the composition of DES on the extraction yield of fatty acids from microalgae. Several DES compositions based on choline chloride, ethylene glycol, and fructose are studied to analyze the influence of water content in these phases. The results show that water content significantly influences recovery yields. The DES with higher extractive capacity were those based on choline chloride, ethylene glycol, and water at a molar ratio of 1:2:2. This composition offered 48.7% of the yield obtained with a conventional solvent like methanol for the recovery of EPA (11.2 mg/g microalgae). Furthermore, the choline chloride-fructose-based DES shows the capability of selective extractions of fatty acids with low carbon content—choline chloride:fructose:water (molar ratio 2:1:2) can extract 0.14 mg of decanoic acid/g of microalgae, indicating that this DES composition can recover 35.7% more decanoic acid in comparison to methanol.

Funder

Spanish Ministry of Education and Vocational Training

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3