Deformer: Denoising Transformer for Improved Audio Music Genre Classification

Author:

Wang Jigang1ORCID,Li Shuyu1,Sung Yunsick2ORCID

Affiliation:

1. Department of Multimedia Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

2. Division of AI Software Convergence, Dongguk University-Seoul, Seoul 04620, Republic of Korea

Abstract

Audio music genre classification is performed to categorize audio music into various genres. Traditional approaches based on convolutional recurrent neural networks do not consider long temporal information, and their sequential structures result in longer training times and convergence difficulties. To overcome these problems, a traditional transformer-based approach was introduced. However, this approach employs pre-training based on momentum contrast (MoCo), a technique that increases computational costs owing to its reliance on extracting many negative samples and its use of highly sensitive hyperparameters. Consequently, this complicates the training process and increases the risk of learning imbalances between positive and negative sample sets. In this paper, a method for audio music genre classification called Deformer is proposed. The Deformer learns deep representations of audio music data through a denoising process, eliminating the need for MoCo and additional hyperparameters, thus reducing computational costs. In the denoising process, it employs a prior decoder to reconstruct the audio patches, thereby enhancing the interpretability of the representations. By calculating the mean squared error loss between the reconstructed and real patches, Deformer can learn a more refined representation of the audio data. The performance of the proposed method was experimentally compared with that of two distinct baseline models: one based on S3T and one employing a residual neural network-bidirectional gated recurrent unit (ResNet-BiGRU). The Deformer achieved an 84.5% accuracy, surpassing both the ResNet-BiGRU-based (81%) and S3T-based (81.1%) models, highlighting its superior performance in audio classification.

Funder

Ministry of Education of the Republic of Korea and the National Research Foundation of Korea

Dongguk University Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3