Prediction of Short-Shot Defects in Injection Molding by Transfer Learning

Author:

Zhou Zhe-Wei1,Yang Hui-Ya1,Xu Bei-Xiu1,Ting Yu-Hung123ORCID,Chen Shia-Chung123ORCID,Jong Wen-Ren123

Affiliation:

1. Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan

2. R & D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan City 320314, Taiwan

3. R & D Center for Semiconductor Carrier, Chung Yuan Christian University, Taoyuan City 320314, Taiwan

Abstract

For a long time, the traditional injection molding industry has faced challenges in improving production efficiency and product quality. With advancements in Computer-Aided Engineering (CAE) technology, many factors that could lead to product defects have been eliminated, reducing the costs associated with trial runs during the manufacturing process. However, despite the progress made in CAE simulation results, there still exists a slight deviation from actual conditions. Therefore, relying solely on CAE simulations cannot entirely prevent product defects, and businesses still need to implement real-time quality checks during the production process. In this study, we developed a Back Propagation Neural Network (BPNN) model to predict the occurrence of short-shots defects in the injection molding process using various process states as inputs. We developed a Back Propagation Neural Network (BPNN) model that takes injection molding process states as input to predict the occurrence of short-shot defects during the injection molding process. Additionally, we investigated the effectiveness of two different transfer learning methods. The first method involved training the neural network model using CAE simulation data for products with length–thickness ratios (LT) of 60 and then applying transfer learning with real process data. The second method trained the neural network model using real process data for products with LT60 and then applied transfer learning with real process data from products with LT100. From the results, we have inferred that transfer learning, as compared to conventional neural network training methods, can prevent overfitting with the same amount of training data. The short-shot prediction models trained using transfer learning achieved accuracies of 90.2% and 94.4% on the validation datasets of products with LT60 and LT100, respectively. Through integration with the injection molding machine, this enables production personnel to determine whether a product will experience a short-shot before the mold is opened, thereby increasing troubleshooting time.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3