Local Thickness Optimization of Functionally Graded Lattice Structures in Compression

Author:

Decker Thierry1ORCID,Kedziora Slawomir1ORCID

Affiliation:

1. Faculty of Science, Technology and Medicine, University of Luxembourg, L-1359 Luxembourg, Luxembourg

Abstract

This paper presents a new method for optimizing the thickness distribution of a functionally graded lattice structure. It links the thickness of discrete lattice regions via mathematical functions, reducing the required number of optimization variables while being applicable to highly nonlinear models and arbitrary optimization goals. This study demonstrates the method’s functionality by altering the local thickness of a lattice structure in compression, optimizing the structure’s specific energy absorption at constant weight. The simulation results suggest significant improvement potential for the investigated Simple Cubic lattice, but less so for the Isotruss variant. The energy absorption levels of the physical test results closely agree with the simulations; however, great care must be taken to accurately capture material and geometry deviations stemming from the manufacturing process. The proposed method can be applied to other lattice structures or goals and could be useful in a wide range of applications where the optimization of lightweight and high-performance structures is required.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3