Affiliation:
1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
Abstract
Currently, there are two main types of anti-floating methods for underground structures; one is the passive anti-floating method represented by anti-draft piles, the other is the active anti-floating method which focuses on interceptor-discharge pressure-reducing (IDPR). In the design of an IDPR anti-floating system, the relief well system situated within the cut-off wall serves as the primary drainage channel. The determination of the seepage field distribution within the multi-well system is vital for the overall design. For the seepage field analysis of the IDPR anti-floating multi-well system, currently numerical analysis is usually used, and there is a lack of simplified analysis methods. The simplified analysis methods already available are based on the uniform distribution of wells in circular pits, while the conversion of non-circular pits into circular pits produce large errors, which are not conducive to promoting the use of the method. To address this, we propose a simplified calculation approach suitable for multi-well systems (arbitrary layout) within elliptical pits. The analytical solution of non-uniformly distributed wells in circular pits is deduced through the principle of superposition. Then, the ellipse is mapped into a circle by using conformal mapping. The resistance coefficient method is adopted, and the internal and external seepage fields are connected in series to obtain the total flow rate, as well as the distribution of the seepage field. This is based on the consideration of the permeability of the waterproof curtains and the bypassing seepage. According to the verification of the calculation example, the results of the simplified algorithm are similar to the results of the finite element method, which proves the accuracy of the method; at the same time, when applied to the actual engineering, the obtained calculation results coincide with the measured data, which proves the practicability and reliability of the method. The simplified method can provide an effective way to design an IDPR anti-floating system.
Funder
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献