Three-Dimensional Surface Reconstruction from Point Clouds Using Euler’s Elastica Regularization

Author:

Song Jintao1ORCID,Pan Huizhu2,Zhang Yuting3,Lu Wenqi4,Ding Jieyu1ORCID,Wei Weibo1,Liu Wanquan5ORCID,Pan Zhenkuan1,Duan Jinming3ORCID

Affiliation:

1. College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

2. School of Electrical Engineering, Mathematical Science and Computing, Curtin University, Perth, WA 6102, Australia

3. School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

4. Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

5. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 510275, China

Abstract

Euler’s elastica energy regularizer, initially employed in mathematical and physical systems, has recently garnered much attention in image processing and computer vision tasks. Due to the non-convexity, non-smoothness, and high order of its derivative, however, the term has yet to be effectively applied in 3D reconstruction. To this day, the industry is still searching for 3D reconstruction systems that are robust, accurate, efficient, and easy to use. While implicit surface reconstruction methods generally demonstrate superior robustness and flexibility, the traditional methods rely on initialization and can easily become trapped in local minima. Some low-order variational models are able to overcome these issues, but they still struggle with the reconstruction of object details. Euler’s elastica term, on the other hand, has been found to share the advantages of both the TV regularization term and the curvature regularization term. In this paper, we aim to address the problems of missing details and complex computation in implicit 3D reconstruction by efficiently using Euler’s elastica term. The main contributions of this article can be outlined in three aspects. Firstly, Euler’s elastica is introduced as a regularization term in 3D point cloud reconstruction. Secondly, a new dual algorithm is devised for the proposed model, significantly improving solution efficiency compared to the commonly used TV model. Lastly, numerical experiments conducted in 2D and 3D demonstrate the remarkable performance of Euler’s elastica in enhancing features of curved surfaces during point cloud reconstruction. The reconstructed point cloud surface adheres more closely to the initial point cloud surface when compared to the classical TV model. However, it is worth noting that Euler’s elastica exhibits a lesser capability in handling local extrema compared to the TV model.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3