Shear Strength Analysis and Slope Stability Study of Straight Root Herbaceous Root Soil Composite

Author:

Wang Bingyu123ORCID,Wang Shijie1ORCID

Affiliation:

1. Urban and Rural Construction Institute, Hebei Agricultural University, Baoding 071001, China

2. Hebei Provincial Institute of Building Science Co., Ltd., Shijiazhuang 050200, China

3. Hebei Provincial Construction Engineering Quality Inspection Center Co., Ltd., Shijiazhuang 050200, China

Abstract

The instability of bare slopes is a prevalent concern. The root system of herbaceous vegetation enhances the shear strength of shallow slope soil. This study investigated the mechanism of the root-soil system as well as the effects of different influencing factors on the shear strength of the soil and slope stability. In particular, indoor experiments were conducted on rootless undisturbed soil (RUS) and undisturbed soil with a root system (USRS) using a triaxial compression apparatus to analyze the slope stability of composite soil with a Tagetes erecta root system. Significance tests and correlation analysis of the factors affecting shear performance were conducted. The slope reinforcement effect by the plant root system was simulated under 24 working conditions using the MIDAS finite element method. The results revealed the influence of the root content, moisture content, and stress on the shear strength of USRS, as well as the contribution degree and influence of these variables on the slope stability. Both RUS and USRS exhibited strain hardening during shearing. A strong negative (positive) correlation was observed between the internal friction angle (φ) (cohesion (c)) of the USRS and the root content (moisture content). The maximum deviatoric stress during shear failure of the USRS was 1.29 times higher than that of the RUS. Moreover, the root content was positively correlated with the slope safety coefficient and the slope of the line under different working conditions, whereas the slope angle was negatively correlated with the slope safety coefficient. The reinforcement effect by the root system resulted in a 11.2% increase in the safety coefficient and the improved stability of slopes with an angle larger than 1.5%. The findings of this study provide new insights into shallow slope stability in practical slope protection projects.

Funder

Hebei Province Construction Science and Technology Research Guidance Plan Project, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3