Evolutionary Algorithm to Optimize Process Parameters of Al/Steel Magnetic Pulse Welding

Author:

Shim Jiyeon1ORCID,Kim Illsoo2

Affiliation:

1. Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology, Jeonju-si 54853, Republic of Korea

2. Department of Mechanical Engineering, Mokpo National University, 1666 Youngsan-ro, Chungkye-myun, Muan-gun 58554, Republic of Korea

Abstract

The Magnetic Pulse Welding (MPW) process uses only electromagnetic force to create a solid-state metallurgical bond between a working coil and outer workpiece. The electromagnetic force drives the outer tube to collide with the inner rod, resulting in successful bonding. However, due to the dissimilarity of the MPW joint, only a portion of the interface forms a metallurgical bond, which affects the quality of the joint. Therefore, the purpose of this study is to analyze the effects of process parameters on joint quality through experimental work using RSM. Furthermore, an optimization algorithm is utilized to optimize the process parameters used in magnetic pulse welding. A1070 aluminum and S45C carbon steel were used as the materials, while peak current, gap between working coil and outer tube, and frequency were chosen as the process parameters for MPW. The welding conditions are determined through experimental design. After welding, the maximum load and weld length are measured to analyze the effect of the process parameters, and a prediction model is developed. Specifically, to achieve a high-quality joint, the process parameters are optimized using the Imperialist Competitive Algorithm (ICA) and Genetic Algorithm (GA). The results reveal that the peak current is a significant parameter, and the developed prediction model exhibits high accuracy. Furthermore, the ICA algorithm proves very effective in determining the process parameters for achieving a high-quality Al/Steel MPW joint.

Funder

Korea Institute of Industrial Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3