Affiliation:
1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology of the Ministry of Education, School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
2. Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China
Abstract
In complex measurement systems, scanning the shape data of solid models is time consuming, and real-time solutions are required. Therefore, we developed a 3D non-rigid transformation deduction model based on multi-control point perception data. We combined a convolutional neural network (CNN), gated recurrent unit (GRU), and self-attention mechanism (SA) to develop the CNN-GRU-SA deduction network, which can deduce 3D non-rigid transformations based on multiple control points. We compared the proposed network to several other networks, with the experimental results indicating that the maximum improvements in terms of loss and root-mean-squared error (RMSE) on the training set were 39% and 49%, respectively; the corresponding values for the testing set were 48% and 29%. Moreover, the average deviation of the inference results and average inference time were 0.55 mm and 0.021 s, respectively. Hence, the proposed deep learning method provides an effective method to simulate and deduce the 3D non-rigid transformation processes of entities in the measurement system space, thus highlighting its practical significance in optimizing entity deformation.
Funder
Key Research and Development Project of the Jilin Province Science and Technology Development Program
Zhongshan Social Public Welfare Science and Technology Research Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献