Deep Learning Approach for Deduction of 3D Non-Rigid Transformation Based on Multi-Control Point Perception Data

Author:

Yan Dongming1ORCID,Li Lijuan12,Liu Yue1ORCID,Lin Xuezhu12,Guo Lili12,Chao Shihan1ORCID

Affiliation:

1. Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology of the Ministry of Education, School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China

2. Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan 528400, China

Abstract

In complex measurement systems, scanning the shape data of solid models is time consuming, and real-time solutions are required. Therefore, we developed a 3D non-rigid transformation deduction model based on multi-control point perception data. We combined a convolutional neural network (CNN), gated recurrent unit (GRU), and self-attention mechanism (SA) to develop the CNN-GRU-SA deduction network, which can deduce 3D non-rigid transformations based on multiple control points. We compared the proposed network to several other networks, with the experimental results indicating that the maximum improvements in terms of loss and root-mean-squared error (RMSE) on the training set were 39% and 49%, respectively; the corresponding values for the testing set were 48% and 29%. Moreover, the average deviation of the inference results and average inference time were 0.55 mm and 0.021 s, respectively. Hence, the proposed deep learning method provides an effective method to simulate and deduce the 3D non-rigid transformation processes of entities in the measurement system space, thus highlighting its practical significance in optimizing entity deformation.

Funder

Key Research and Development Project of the Jilin Province Science and Technology Development Program

Zhongshan Social Public Welfare Science and Technology Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3