A Multiscale Deep Encoder–Decoder with Phase Congruency Algorithm Based on Deep Learning for Improving Diagnostic Ultrasound Image Quality

Author:

Kim Ryeonhui12,Kim Kyuseok3ORCID,Lee Youngjin4

Affiliation:

1. Department of Radiology, Sunchonhyang University Bucheon Hospital, 170, Jomaru-ro, Bucheon-si 14584, Gyeonggi-do, Republic of Korea

2. Department of Health Science, General Graduate School of Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea

3. Department of Biomedical Engineering, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si 13135, Gyeonggi-do, Republic of Korea

4. Department of Radiological Science, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea

Abstract

Ultrasound imaging is widely used as a noninvasive lesion detection method in diagnostic medicine. Improving the quality of these ultrasound images is very important for accurate diagnosis, and deep learning-based algorithms have gained significant attention. This study proposes a multiscale deep encoder–decoder with phase congruency (MSDEPC) algorithm based on deep learning to improve the quality of diagnostic ultrasound images. The MSDEPC algorithm included low-resolution (LR) images and edges as inputs and constructed a multiscale convolution and deconvolution network. Simulations were conducted using the Field 2 program, and data from real experimental research were obtained using five clinical datasets containing images of the carotid artery, liver hemangiomas, breast malignancy, thyroid carcinomas, and obstetric nuchal translucency. LR images, bicubic interpolation, and super-resolution convolutional neural networks (SRCNNs) were modeled as comparison groups. Through visual assessment, the image processed using the MSDEPC was the clearest, and the lesions were clearly distinguished. The structural similarity index metric (SSIM) value of the simulated ultrasound image using the MSDEPC algorithm improved by approximately 38.84% compared to LR. In addition, the peak signal-to-noise ratio (PSNR) and SSIM values of clinical ultrasound images using the MSDEPC algorithm improved by approximately 2.33 times and 88.58%, respectively, compared to LR. In conclusion, the MSDEPC algorithm is expected to significantly improve the spatial resolution of ultrasound images.

Funder

National Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3