Study on the Aging Behavior of Asphalt Binder Exposed to Different Environmental Factors

Author:

Song Shanglin123,Wang Linbing4,Fu Chunping5,Guo Meng67ORCID,Jiang Xiaoqiang8,Liang Meichen67ORCID,Yan Luchun3

Affiliation:

1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China

2. Scientific Observation and Research Base of Transport Industry of Long Term Performance of Highway Infrastructure in Northwest Cold and Arid Regions, Dunhuang 736200, China

3. Gansu Henglu Transportation Survey and Design Institute Co., Ltd., Lanzhou 730070, China

4. School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA

5. Gansu Provincial Highway Development Group Co., Ltd., Lanzhou 730070, China

6. State Key Laboratory of Bridge Engineering Safety and Resilience, Beijing University of Technology, Beijing 100124, China

7. The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

8. Gansu Hengtong Road and Bridge Engineering Co., Ltd., Lanzhou 730070, China

Abstract

Accelerated aging methods commonly used in laboratories struggle to replicate the outdoor aging process of asphalt binder. The aim of this study is to elucidate the impact of different environmental factors on the aging of asphalt binder and recreate the exposure process of asphalt binder. To achieve the study’s objectives, the asphalt binder was subjected to various environmental conditions through different aging modes. Three exposure modes (all environmental factors, the effects of light, temperature, oxygen, the effects of temperature, oxygen, and others) were established to assess the impact of various environmental factors on asphalt binder aging behavior. This mode was labeled O+UV-aging, earning it the name O-aging. The aging behaviors were assessed across multiple dimensions, considering apparent morphology, rheological properties, and chemical composition. The study’s findings highlight that factors such as ultraviolet radiation are primarily responsible for the formation of micro-cracks and increased surface roughness in aged asphalt binder. Ultraviolet radiation significantly affected the aging of asphalt binder during outdoor exposure. SBS modifiers increased the risk of fatigue cracking in the virgin asphalt binder but enhanced its aging resistance. After All-aging, the G-R parameter increase of virgin asphalt binder was 2.6 times that of SBS-modified asphalt binder. Throughout the exposure process, the broken molecular chains and the original molecular chains in the asphalt binder underwent polymerization reactions, resulting in longer carbon chains and cycloalkane aromatization. It was discovered that exposure showed less effect on the characteristic functional groups of SBS-modified binder than on virgin binder. After All-aging, the carbonyl index of SBS-modified asphalt binder was 56.4% higher than that of virgin asphalt binder.

Funder

Gansu Provincial Science and Technology Plan Project

Research project of Gansu Provincial Department of Transportation

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3