Research on Quantization Parameter Decision Scheme for High Efficiency Video Coding

Author:

Jin Xuesong1,Chai Yansong1

Affiliation:

1. School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China

Abstract

High-Efficiency Video Coding (HEVC) is one of the most widely studied coding standards. It still uses the block-based hybrid coding framework of Advanced Video Coding (AVC), and compared to AVC, it can double the compression ratio while maintaining the same quality of reconstructed video. The quantization module is an important module in video coding. In the process of quantization, quantization parameter is an important factor in determining the bitrate in video coding, especially in the case of limited channel bandwidth. It is particularly important to select a reasonable quantization parameter to make the bitrate as close as possible to the target bitrate. Aiming at the problem of unreasonable selection of quantization parameters in codecs, this paper proposes using a differential evolution algorithm to assign quantization parameter values to the coding tree unit (CTU) in each frame of 360-degree panoramic video based on HEVC so as to strike a balance between bitrate and distortion. Firstly, the number of CTU rows in a 360-degree panoramic video frame is considered as the dimension of the optimization problem. Then, a trial vector is obtained by randomly selecting the vectors in the population for mutation and crossover. In the mutation step, the algorithm generates a new parameter vector by adding the weighted difference between two population vectors to a third vector. And the elements in the new parameter vector are selected according to the crossover rate. Finally, the trial vector is regarded as the quantization parameter of each CTU in the CTU row to encode, and the vector with the least rate distortion is selected. The algorithm will produce the optimal quantization parameter combination for the current video. The experimental results show that compared to the benchmark algorithm of HEVC reference software HM-16.20, the proposed algorithm can provide a bit saving of 1.86%, while the peak signal-to-noise ratio (PSNR) can be improved by 0.07 dB.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. λ-Domain Perceptual Rate Control for 360-Degree Video Compression;Li;IEEE J. Sel. Top. Signal Process.,2019

2. 263: Video coding for low-bit-rate communication;Rijkse;IEEE Commun. Mag.,1996

3. H.263+: The new itu-t recommendation for video coding at low bit rates;Gardos;Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181),1998

4. Richardson, I.E.H. (2004). 264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia, John Wiley & Sons.

5. Overview of the high efficiency video coding (HEVC) standard;Sullivan;IEEE Trans. Circuits Syst. Video Technol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3