Examining the Quasi-Steady Airflow Assumption in Irregular Vocal Fold Vibration

Author:

Wang Xiaojian1,Zheng Xudong12,Titze Ingo R.3ORCID,Palaparthi Anil3ORCID,Xue Qian12ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Maine, Orono, ME 04473, USA

2. Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA

3. Utah Center for Vocology, The University of Utah, Salt Lake City, UT 84112, USA

Abstract

The quasi-steady flow assumption (QSFA) is commonly used in the field of biomechanics of phonation. It approximates time-varying glottal flow with steady flow solutions based on frozen glottal shapes, ignoring unsteady flow behaviors and vocal fold motion. This study examined the limitations of QSFA in human phonation using numerical methods by considering factors of phonation frequency, air inertance in the vocal tract, and irregular glottal shapes. Two sets of irregular glottal shapes were examined through dynamic, pseudo-static, and quasi-steady simulations. The differences between dynamic and quasi-steady/pseudo-static simulations were measured for glottal flow rate, glottal wall pressure, and sound spectrum to evaluate the validity of QSFA. The results show that errors in glottal flow rate and wall pressure predicted by QSFA were small at 100 Hz but significant at 500 Hz due to growing flow unsteadiness. Air inertia in the vocal tract worsened predictions when interacting with unsteady glottal flow. Flow unsteadiness also influenced the harmonic energy ratio, which is perceptually important. The effects of glottal shape and glottal wall motion on the validity of QSFA were found to be insignificant.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3