Two-Path Spatial-Temporal Feature Fusion and View Embedding for Gait Recognition

Author:

Guan Diyuan12,Hua Chunsheng1,Zhao Xiaoheng1

Affiliation:

1. Institute of Intelligent Robots and Pattern Recognition, College of Information, Liaoning University, Shenyang 110036, China

2. College of Information Engineering, Shenyang University, Shenyang 110044, China

Abstract

Gait recognition is a distinctive biometric technique that can identify pedestrians by their walking patterns from considerable distances. A critical challenge in gait recognition lies in effectively acquiring discriminative spatial-temporal representations from silhouettes that exhibit invariance to disturbances. In this paper, we present a novel gait recognition network by aggregating features in the spatial-temporal and view domains, which consists of two-path spatial-temporal feature fusion module and view embedding module. Specifically, two-path spatial-temporal feature fusion module firstly utilizes multi-scale feature extraction (MSFE) to enrich the input features with multiple convolution kernels of various sizes. Then, frame-level spatial feature extraction (FLSFE) and multi-scale temporal feature extraction (MSTFE) are parallelly constructed to capture spatial and temporal gait features of different granularities and these features are fused together to obtain muti-scale spatial-temporal features. FLSFE is designed to extract both global and local gait features by employing a specially designed residual operation. Simultaneously, MSTFE is applied to adaptively interact multi-scale temporal features and produce suitable motion representations in temporal domain. Taking into account the view information, we introduce a view embedding module to reduce the impact of differing viewpoints. Through the extensive experimentation over CASIA-B and OU-MVLP datasets, the proposed method has achieved superior performance to the other state-of-the-art gait recognition approaches.

Funder

Research Foundation of Education Bureau of Liaoning Province

Science and Technology Project of Department of Science & Technology of Liaoning Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3