φunit: A Lightweight Module for Feature Fusion Based on Their Dimensions

Author:

Long Zhengyu12,Zhou Rigui12ORCID,Li Yaochong12,Ren Pengju12,Yang Xue12,Cai Shuo12

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

2. Research Center of Intelligent Information Processing and Quantum Intelligent Computing, Shanghai 201306, China

Abstract

With the popularity of mobile devices, lightweight deep learning models have important value in various application scenarios. However, how to effectively fuse the feature information from different dimensions while ensuring the model’s lightness and high accuracy is a problem that has not been fully solved. In this paper, we propose a novel feature fusion module, called φunit, which can fuse the features extracted by different dimensional networks according to the order of feature information with a small computational cost, avoiding the problems of information fragmentation caused by simple feature stacking in traditional information fusion. Based on φunit, this paper further builds an extremely lightweight model φNet, which can achieve performance close to the highest accuracy on several public datasets under the condition of very limited parameter scale. The core idea of φunit is to use deconvolution to reduce the discrepancy among the features to be fused, and to lower the possibility of feature information fragmentation after fusion by fusing the features from different dimensions sequentially. φNet is a lightweight network composed of multiple φunits and bottleneck modules, with a parameter scale of only 1.24 M, much smaller than traditional lightweight models. This paper conducts experiments on public datasets, and φNet achieves an accuracy of 71.64% on the food101 dataset, and an accuracy of 75.31% on the random 50-category food101 dataset, both higher than or close to the highest accuracy. This paper provides a new idea and method for feature fusion of lightweight models, and also provides an efficient model selection for deep learning applications on mobile devices.

Funder

National Key R&D Plan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3