Experimental Study on Enhanced Phosphorus Removal Using Zirconium Oxychloride Octahydrate-Modified Efficient Phosphorus Removal Composite

Author:

Liu Yan1,Su Junjun1ORCID

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing 210096, China

Abstract

In addressing eutrophication and enhancing water quality, this study builds upon previous research involving the development of an Efficient Phosphorus Removal Composite (EPRC), a material created using modified industrial wastes (steel slag and fly ash) as adsorbent substrates, supplemented with a binder and porosity-forming agent. In this investigation, the EPRC was further enhanced through the addition of zirconium oxychloride octahydrate, resulting in the production of Zr-EPRC particles as reinforced phosphorus removal materials. Comparative experiments were conducted to assess different methods for preparing Zr-EPRC, the static adsorption performance, and dynamic adsorption behavior. The optimal preparation of Zr-EPRC was achieved by separately modifying the base materials, steel slag and fly ash. Loading with mass ratios of zirconium chloride octahydrate to fly ash and steel slag at 0.4 and 0.6, respectively, for a duration of 12 h at a pH of 10 yielded the best results. In static adsorption experiments conducted at temperatures of 15 °C, 25 °C, and 35 °C, Zr-EPRC exhibited saturated phosphorus adsorption capacities of 11.833 mg/g (variance = 0.993), 12.550 mg/g (variance = 0.993), and 13.462 mg/g (variance = 0.996), respectively. Zr-EPRC emerges as a cost-effective and readily available solution with promising stability for general wastewater treatment applications, contributing significantly to the mitigation of eutrophication and the improvement of water quality.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3