Computational Imaging at the Infrared Beamline of the Australian Synchrotron Using the Lucy–Richardson–Rosen Algorithm

Author:

Ng Soon Hock12ORCID,Anand Vijayakumar13ORCID,Han Molong1,Smith Daniel12ORCID,Maksimovic Jovan12,Katkus Tomas12,Klein Annaleise4,Bambery Keith4ORCID,Tobin Mark J.4,Vongsvivut Jitraporn4ORCID,Juodkazis Saulius125ORCID

Affiliation:

1. Optical Sciences Centre, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

2. ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

3. Institute of Physics, University of Tartu, 50411 Tartu, Estonia

4. Infrared Microspectroscopy (IRM) Beamline, ANSTO—Australian Synchrotron, Clayton, VIC 3168, Australia

5. Tokyo Tech World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Abstract

The Fourier transform infrared microspectroscopy (FTIRm) system of the Australian Synchrotron has a unique optical configuration with a peculiar beam profile consisting of two parallel lines. The beam is tightly focused using a 36× Schwarzschild objective to a point on the sample and the sample is scanned pixel by pixel to record an image of a single plane using a single pixel mercury cadmium telluride detector. A computational stitching procedure is used to obtain a 2D image of the sample. However, if the imaging condition is not satisfied, then the recorded object’s information is distorted. Unlike commonly observed blurring, the case with a Schwarzschild objective is unique, with a donut like intensity distribution with three distinct lobes. Consequently, commonly used deblurring methods are not efficient for image reconstruction. In this study, we have applied a recently developed computational reconstruction method called the Lucy–Richardson–Rosen algorithm (LRRA) in the online FTIRm system for the first time. The method involves two steps: training step and imaging step. In the training step, the point spread function (PSF) library is recorded by temporal summation of intensity patterns obtained by scanning the pinhole in the x-y directions across the path of the beam using the single pixel detector along the z direction. In the imaging step, the process is repeated for a complicated object along only a single plane. This new technique is named coded aperture scanning holography. Different types of samples, such as two pinholes; a number 3 USAF object; a cross shaped object on a barium fluoride substrate; and a silk sample are used for the demonstration of both image recovery and 3D imaging applications.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3