Optimization of Ca–Al–Mn–Si Substitution Level for Enhanced Magnetic Properties of M-Type Sr-Hexaferrites for Permanent Magnet Application

Author:

Lim Jun-Pyo1,Yun Eel-Ho1,Kang Young-Min1ORCID

Affiliation:

1. Department of Materials Science & Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea

Abstract

Enhanced hard magnetic properties were achieved in M-type hexaferrite by optimizing the substitution levels of Mn, Al, and Si for Fe, and Ca for Sr within SrFe12O19. The addition of Al–Si–Mn effectively controlled crystallite growth, resulting in an increased coercivity (HC), while causing a decrease in the remanent magnetization (4πMr). A higher Ca content exhibited a trend of increasing the sintered density but decreasing the 4πMr and HC. The optimized composition, considering both the 4πMr and HC, was determined to be Sr0.8Ca0.2Fe10.2Mn0.1Al0.2Si0.1O19−d, with a sintered density of 4.84 g/cm3, 4πMr = 2.22 kG, and HC = 5.10 kOe. This result demonstrates the achievement of isotropic magnets with controlled crystal growth and densification without additional sintering additives. This development is promising, as this enhancement could be achieved without the use of cobalt, an expensive but essential ingredient in high-performance permanent magnets.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3