Experimental Study on the Floor Heave and Failure Process of Rock Samples under Biaxial Step Loading

Author:

Li Diyuan1ORCID,Peng Zhen1,Zhu Quanqi1ORCID,Ma Jinyin1,Gong Hao1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

Floor heave is a typical tunnel issue in tunnelling engineering. To gain deep insights into the deformation mechanism and failure processes of floor heave at the bottom of a tunnel in layered rock, biaxial step-loading tests were conducted on rock samples (including schist and sandstone) with and without prefabricated invert arches. The failure processes of the samples were observed by the three-dimensional digital image correlation technique (3D-DIC) during the test. The test results showed that the deformation evolution processes of the floor heave of the sample included the following steps: (1) crack initiation at the interlayer weak planes; (2) separation of the rock matrix into platy structures along the bedding planes and flexures; and (3) fracture and uplift of the platy structures in the middle part. As the stress redistributes on the bottom plate of the sample, and stress concentration zones shift toward locations far away from the arching surface, the deformation evolution shows a similar variation trend with the stress. Continuous buckling fracturing takes place progressively from the vicinity of the arch surface to certain distant regions. Based on the test results, the key location of internal surrounding rock deformation was determined, and the mechanism of floor heave was clarified. The schist sample SC-BI-10 began to experience floor heave at 1064.4 s, and the deformation curve (the relationship between Y and U) showed a convex shape in the range of 0–20 mm in the Y-coordinate. The displacement reached its maximum value at y = 11.7 mm, corresponding to the position where the rock slab was broken. In addition, the influence of the interlayer properties and cover depth of rocks on bottom uplift was also studied. The design of tunnel supports and the monitoring and prevention of floor heave can benefit from this study.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3