Ore Rock Fragmentation Calculation Based on Multi-Modal Fusion of Point Clouds and Images

Author:

Peng Jianjun1,Cui Yunhao1,Zhong Zhidan1ORCID,An Yi2

Affiliation:

1. College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

The accurate calculation of ore rock fragmentation is important for achieving the autonomous mining operation of mine excavators. However, a single mode cannot accurately calculate the ore rock fragmentation due to the low resolution of the point cloud mode and the lack of spatial position information of the image mode. To solve this problem, we propose an ore rock fragmentation calculation method (ORFCM) based on the multi-modal fusion of point clouds and images. The ORFCM makes full use of the advantages of multi-modal data, including the fine-grained object segmentation of images and spatial location information of point clouds. To solve the problem of image under-segmentation, we propose a multiscale adaptive edge-detection method based on an innovative standard deviation map to enhance the weak edges. Furthermore, an improved marked watershed segmentation algorithm is proposed to solve the problem of low segmentation accuracy caused by excessive noise of the gradient map and weak edges submerged. Experiments demonstrate that ORFCM can accurately calculate ore rock fragmentation in the local excavation area without relying on external markers for pixel calibration. The average error of the equivalent diameter of ore rock blocks is 0.66 cm, the average error of the elliptical long diameter is 1.42 cm, and the average error of the elliptical short diameter is 1.06 cm, which can effectively meet practical engineering needs.

Funder

National Natural Science Foundation of China

Major Science and Technology Project of Henan Province

Joint Fund of Science and Technology Research and Development Plan of Henan Province

Key Research Projects of Higher Education Institutions of Henan Province

Natural Science Foundation of Liaoning Province

Science and Technology Major Project of Shanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3