High-Capacity Reversible Data Hiding in Encrypted Images Based on Pixel Prediction and QuadTree Decomposition

Author:

Alqahtani Muhannad1,Masmoudi Atef1ORCID

Affiliation:

1. College of Computer Science, King Khalid University, Abha 62529, Saudi Arabia

Abstract

Over the past few years, a considerable number of researchers have shown great interest in reversible data hiding for encrypted images (RDHEI). One popular category among various RDHEI methods is the reserving room before encryption (RRBE) approach, which leverages data redundancy in the original image before encryption to create space for data hiding and to achieve high embedding rates (ERs). This paper introduces an RRBE-based RDHEI method that employs pixel prediction, quadtree decomposition, and bit plane reordering to provide high embedding capacity and error-free reversibility. Initially, the content owner predicts the error image using a prediction method, followed by mapping it to a new error image with positive pixel values and a compressed binary label map is generated for overhead pixels. Subsequently, quadtree decomposition is applied to each bit plane of the mapped prediction error image to identify homogeneous blocks, which are then reordered to create room for data embedding. After generating the encrypted image with the encryption key, the data hider employs the data hiding key to embed the data based on the auxiliary information added to each embeddable bit plane’s beginning. Finally, the receiver is able to retrieve the secret message without any error, decrypt the image, and restore it without any loss or distortion. The experimental results demonstrate that the proposed RDHEI method achieves significantly higher ERs than previous competitors, with an average ER exceeding 3.6 bpp on the BOSSbase and BOWS-2 datasets.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3