GIS Approach for Expressing Structural Landforms: Forms, Elements, and Relationships

Author:

Liu Yanrong1,Lu Guonian234,Meng Zhongqiu1ORCID,Guo Dashu1,Hu Di234ORCID,Zhu Lei5,He Handong167ORCID

Affiliation:

1. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

2. Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023, China

3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

4. State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China

5. School of Economics and Management, Beihang University, Beijing 100191, China

6. Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Hefei 230036, China

7. Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

Abstract

A structural landform is defined by its surface morphology, controlled by tectonics, lithology (arrangement and resistance), and folded structures, and demonstrated by the characteristics and relationships between geological and geomorphic elements. It is very important to use geographic information system (GIS) technology to accurately describe and express elements of structural landforms and their relationships. In this study, a GIS approach for expressing structural landforms, based on “forms–elements–relationships”, was developed. The contributions of this paper are as follows: (1) Combined with the surface morphological characteristics, the structural landforms were abstracted into geological and geomorphic elements, and the characteristics and relationships of these elements were analyzed. (2) The elements of structural landforms and their relationships were abstracted into spatial objects and topological relationships. The spatial objects of the structural landform were designed based on the types and characteristics of structural landform elements. The topological relationships were developed based on the definition of the structural landform morphotype. (3) The structural landform markup language (SLML) method of “forms–elements–relationships” was created. (4) Two typical structural landforms, namely, Qixia Mountain and Gaoli Mountain, were used as examples to verify the feasibility and effectiveness of the GIS approach for expressing structural landforms. This paper describes and expresses the “forms–elements–relationships” of structural landforms from the perspective of GIS, which is expected to promote the joint development of structural geomorphology and GIS.

Funder

National Natural Science Foundations of China

National Undergraduate Innovation and Entrepreneurship Training Program

Anhui Provincial Graduate Education Quality Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3