Abstract
Accident analysis and prevention are helpful to ensure the sustainable development of transportation. The aim of this research was to investigate the factors associated with the severity of low-visibility-related rural single-vehicle crashes. Firstly, a latent class clustering model was implemented to partition the whole-dataset into a relatively homogeneous sub-dataset. Then, a spatial random parameters logit model was established for each dataset to capture unobserved heterogeneity and spatial correlation. Analysis was conducted based on the crash data (2014–2019) from 110 two-lane road segments. The results show that the proposed method is a superior crash severity modeling approach to accommodate the unobserved heterogeneity and spatial correlation. Three variables—seatbelt not used, motorcycle, and collision with fixed object—have a stable positive correlation with crash severity. Motorcycle leads to a 12.8%, 23.8%, and 12.6% increase in the risk of serious crashes in the whole-dataset, cluster 3, and cluster 4, respectively. In the whole-dataset, cluster 2, and cluster 3, the risk of serious crashes caused by seatbelt not used increased by 5.5%, 0.1%, and 30.6%, respectively, and caused by collision with fixed object increased by 33.2%, 1.2%, and 13.2%, respectively. The results can provide valuable information for engineers and policy makers to develop targeted measures.
Funder
National Natural Science Foundation of China
National Science Foundation for Distinguished Young Scholars
Natural Science Foundation of Shandong
Postdoctoral Research Assistance Program of Jiangsu
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献