Integrated Energy System Planning Optimization Method and Case Analysis Based on Multiple Factors and A Three-Level Process

Author:

Qian KangORCID,Lv Tong,Yuan Yue

Abstract

Now that China has outlined its goals of “carbon peak and carbon neutrality”, the development of clean energy will accelerate, the connection between different energy systems will be closer, and the development prospects of the integrated energy service industry will be broader. Integrated energy services are promoting energy transformation and services. “Carbon peaking, carbon neutrality” and other aspects will also have multiple values and far-reaching significance. Before implementing integrated energy services, the top-level design of integrated energy system planning must be carried out, and how to achieve the optimal allocation of capacity in the field of integrated energy systems is an urgent problem to be solved in integrated energy system planning. This paper combines practical engineering experience and the latest theoretical research results to creatively introduce, for the first time, a comprehensive evaluation into the initial planning stage, and proposes, also for the first time, a three-level multi-element comprehensive energy system planning optimization method which combines multi-element requirements to carry out comprehensive energy system planning and optimization. The three-tier planning and optimization solution results in the optimal planning scheme of the integrated energy system, thereby making the scheme more specific and reliable. According to the demand data of an industrial park, this method was applied to complete a case analysis of integrated energy system planning, which verified the feasibility and effectiveness of the method. This method is easy to popularize, and it will guide the planning of integrated energy systems, promote integrated energy services, promote energy transition, and make positive contributions to achieve carbon neutrality as soon as possible.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3