Abstract
Concrete made with large-size recycled aggregates is a new kind of recycled concrete, where the size of the recycled aggregate used is 25–80 mm, which is generally three times that of conventional aggregate. Thus, its composition and mechanical properties are different from that of conventional recycled concrete and can be applied in large-volume structures. In this study, recycled aggregate generated in two stages with randomly distributed gravels and mortar was used to replace the conventional recycled aggregate model, to observe the internal stress state and cracking of the large-size recycled aggregate. This paper also investigated the mechanical properties, such as the compressive strength, crack morphology, and stress–strain curve, of concrete with large-size recycled aggregates under different confining pressures and recycled aggregate incorporation ratios. Through this research, it was found that when compared with conventional concrete, under the confining pressure, the strength of large-size recycled aggregate concrete did not decrease significantly at the same stress state, moreover, the stiffness was increased. Confining pressure has a significant influence on the strength of large-size recycled aggregate cocrete.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献