Abstract
Advanced air mobility (AAM) is a broad concept enabling consumers access to on-demand air mobility, cargo and package delivery, healthcare applications, and emergency services through an integrated and connected multimodal transportation network. However, a number of challenges could impact AAM’s growth potential, such as autonomous flight, the availability of take-off and landing infrastructure (i.e., vertiports), integration into airspace and other modes of transportation, and competition with shared automated vehicles. This article discusses the results of a demand analysis examining the market potential of two potential AAM passenger markets—airport shuttles and air taxis. The airport shuttle market envisions AAM passenger service to, from, or between airports along fixed routes. The air taxi market envisions a more mature and scaled service that provides on-demand point-to-point passenger services throughout urban areas. Using a multi-method approach consisting of AAM travel demand modeling, Monte Carlo simulations, and constraint analysis, this study estimates that the air taxi and airport shuttle markets could capture a 0.5% mode share. The analysis concludes that AAM could replace non-discretionary trips greater than 45 min; however, demand for discretionary trips would be limited by consumer willingness to pay. This study concludes that AAM passenger services could have a daily demand of 82,000 passengers served by approximately 4000 four- to five-seat aircraft in the U.S., under the most conservative scenario, representing an annual market valuation of 2.5 billion USD.
Funder
National Aeronautics and Space Administration
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference23 articles.
1. Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges
2. The Future of Vertical Mobility: Sizing the Market for Passenger, Inspection, and Goods Services Until 2035;Grandl,2018
3. Are Flying Cars Preparing for Takeoff,2019
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献