Proposal-Free Fully Convolutional Network: Object Detection Based on a Box Map

Author:

Su Zhihao1ORCID,Adam Afzan1ORCID,Nasrudin Mohammad Faidzul1ORCID,Prabuwono Anton Satria2ORCID

Affiliation:

1. Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

2. Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh 21911, Saudi Arabia

Abstract

Region proposal-based detectors, such as Region-Convolutional Neural Networks (R-CNNs), Fast R-CNNs, Faster R-CNNs, and Region-Based Fully Convolutional Networks (R-FCNs), employ a two-stage process involving region proposal generation followed by classification. This approach is effective but computationally intensive and typically slower than proposal-free methods. Therefore, region proposal-free detectors are becoming popular to balance accuracy and speed. This paper proposes a proposal-free, fully convolutional network (PF-FCN) that outperforms other state-of-the-art, proposal-free methods. Unlike traditional region proposal-free methods, PF-FCN can generate a “box map” based on regression training techniques. This box map comprises a set of vectors, each designed to produce bounding boxes corresponding to the positions of objects in the input image. The channel and spatial contextualized sub-network are further designed to learn a “box map”. In comparison to renowned proposal-free detectors such as CornerNet, CenterNet, and You Look Only Once (YOLO), PF-FCN utilizes a fully convolutional, single-pass method. By reducing the need for fully connected layers and filtering center points, the method considerably reduces the number of trained parameters and optimizes the scalability across varying input sizes. Evaluations of benchmark datasets suggest the effectiveness of PF-FCN: the proposed model achieved an mAP of 89.6% on PASCAL VOC 2012 and 71.7% on MS COCO, which are higher than those of the baseline Fully Convolutional One-Stage Detector (FCOS) and other classical proposal-free detectors. The results prove the significance of proposal-free detectors in both practical applications and future research.

Funder

MIGHT-TUBITAK research

proofreading

Publisher

MDPI AG

Reference53 articles.

1. Object detection with deep learning: A review;Zhao;IEEE Trans. Neural Netw. Learn. Syst.,2019

2. Deep learning-based object detection in augmented reality: A systematic review;Ghasemi;Comput. Ind.,2022

3. (2020). Deep Learning in Computer Vision: Principles and Applications, CRC Press.

4. Review of local binary pattern operators in image feature extraction;Khaleefah;Indones. J. Electr. Eng. Comput. Sci.,2020

5. Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014, January 23–28). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3