Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses

Author:

Kruse Julia1,Wörner Julius1ORCID,Schneider Jan1,Dörksen Helene2,Pein-Hackelbusch Miriam1ORCID

Affiliation:

1. Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany

2. Institute Industrial IT (inIT), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany

Abstract

To evaluate the suitability of an analytical instrument, essential figures of merit such as the limit of detection (LOD) and the limit of quantification (LOQ) can be employed. However, as the definitions k nown in the literature are mostly applicable to one signal per sample, estimating the LOD for substances with instruments yielding multidimensional results like electronic noses (eNoses) is still challenging. In this paper, we will compare and present different approaches to estimate the LOD for eNoses by employing commonly used multivariate data analysis and regression techniques, including principal component analysis (PCA), principal component regression (PCR), as well as partial least squares regression (PLSR). These methods could subsequently be used to assess the suitability of eNoses to help control and steer processes where volatiles are key process parameters. As a use case, we determined the LODs for key compounds involved in beer maturation, namely acetaldehyde, diacetyl, dimethyl sulfide, ethyl acetate, isobutanol, and 2-phenylethanol, and discussed the suitability of our eNose for that dertermination process. The results of the methods performed demonstrated differences of up to a factor of eight. For diacetyl, the LOD and the LOQ were sufficiently low to suggest potential for monitoring via eNose.

Funder

SAIL: SustAInable Life-cycle of Intelligent Socio-Technical Systems

“Netzwerke 2021” of the Ministry of Culture and Science of the State of Northrhine Westphalia, Germany

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3