Evaluating Technicians’ Workload and Performance in Diagnosis for Corrective Maintenance

Author:

Shin Hyunjong1,Rothrock Ling1ORCID,Prabhu Vittaldas1

Affiliation:

1. Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

The advancement in digital technology is transforming the world. It enables smart product–service systems that improve productivity by changing tasks, processes, and the ways we work. There are great opportunities in maintenance because many tasks require physical and cognitive work, but are still carried out manually. However, the interaction between a human and a smart system is inevitable, since not all tasks in maintenance can be fully automated. Therefore, we conducted a controlled laboratory experiment to investigate the impact on technicians’ workload and performance due to the introduction of smart technology. Especially, we focused on the effects of different diagnosis support systems on technicians during maintenance activity. We experimented with a model that replicates the key components of a computer numerical control (CNC) machine with a proximity sensor, a component that requires frequent maintenance. Forty-five participants were evenly assigned to three groups: a group that used a Fault-Tree diagnosis support system (FTd-system), a group that used an artificial intelligence diagnosis support system (AId-system), and a group that used neither of the diagnosis support systems. The results show that the group that used the FTd-system completed the task 15% faster than the group that used the AId-system. There was no significant difference in the workload between groups. Further analysis using the NGOMSL model implied that the difference in time to complete was probably due to the difference in system interfaces. In summary, the experimental results and further analysis imply that adopting the new diagnosis support system may improve maintenance productivity by reducing the number of diagnosis attempts without burdening technicians with new workloads. Estimates indicate that the maintenance time and the cognitive load can be reduced by 8.4 s and 15% if only two options are shown in the user interface.

Publisher

MDPI AG

Reference54 articles.

1. Maintenance transformation through Industry 4.0 technologies: A systematic literature review;Silvestri;Comput. Ind.,2020

2. Simulation study of a bottleneck-based dispatching policy for a maintenance workforce;Langer;Int. J. Prod. Res.,2010

3. Human factors in maintenance: A review;Sheikhalishahi;J. Qual. Maint. Eng.,2016

4. Neumann, U., and Majoros, A. (1998, January 14–18). Cognitive, Performance, and Systems Issues for Augmented Reality Applications in Manufacturing and Maintenance. Proceedings of the IEEE 1998 Virtual Reality Annual International Symposium, Atlanta, GA, USA.

5. Classifying plant operator maintenance proficiency: Examining personal variables;Cabahug;Build. Res. Inf.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3