Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems

Author:

Nail-Ulloa Iván12,Zabala Michael3,Sesek Richard1,Chen Howard4,Schall Mark C.1ORCID,Gallagher Sean1

Affiliation:

1. Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA

2. Institute of Industry and Management, Universidad Austral de Chile, Puerto Montt 5480000, Chile

3. Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA

4. Department of Industrial and Systems Engineering and Engineering Management, The University of Alabama at Huntsville, Huntsville, AL 35899, USA

Abstract

This study assesses the agreement of compressive and shear force estimates at the L5-S1 joint using inertial motion capture (IMC) within a musculoskeletal simulation model during manual lifting tasks, compared against a top-down optical motion capture (OMC)-based model. Thirty-six participants completed lifting and lowering tasks while wearing a modified Plug-in Gait marker set for the OMC and a full-body IMC set-up consisting of 17 sensors. The study focused on tasks with variable load weights, lifting heights, and trunk rotation angles. It was found that the IMC system consistently underestimated the compressive forces by an average of 34% (975.16 N) and the shear forces by 30% (291.77 N) compared with the OMC system. A critical observation was the discrepancy in joint angle measurements, particularly in trunk flexion, where the IMC-based model underestimated the angles by 10.92–11.19 degrees on average, with the extremes reaching up to 28 degrees. This underestimation was more pronounced in tasks involving greater flexion, notably impacting the force estimates. Additionally, this study highlights significant differences in the distance from the spine to the box during these tasks. On average, the IMC system showed an 8 cm shorter distance on the X axis and a 12–13 cm shorter distance on the Z axis during lifting and lowering, respectively, indicating a consistent underestimation of the segment length compared with the OMC system. These discrepancies in the joint angles and distances suggest potential limitations of the IMC system’s sensor placement and model scaling. The load weight emerged as the most significant factor affecting force estimates, particularly at lower lifting heights, which involved more pronounced flexion movements. This study concludes that while the IMC system offers utility in ergonomic assessments, sensor placement and anthropometric modeling accuracy enhancements are imperative for more reliable force and kinematic estimations in occupational settings.

Funder

National Institute for Occupational Safety and Health

Deep South Center for Occupational Health and Safety at the University of Alabama-Birmingham (UAB) and Auburn University

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3