Imputing Satellite-Derived Aerosol Optical Depth Using a Multi-Resolution Spatial Model and Random Forest for PM2.5 Prediction

Author:

Kianian BehzadORCID,Liu YangORCID,Chang Howard H.ORCID

Abstract

A task for environmental health research is to produce complete pollution exposure maps despite limited monitoring data. Satellite-derived aerosol optical depth (AOD) is frequently used as a predictor in various models to improve PM2.5 estimation, despite significant gaps in coverage. We analyze PM2.5 and AOD from July 2011 in the contiguous United States. We examine two methods to aid in gap-filling AOD: (1) lattice kriging, a spatial statistical method adapted to handle large amounts data, and (2) random forest, a tree-based machine learning method. First, we evaluate each model’s performance in the spatial prediction of AOD, and we additionally consider ensemble methods for combining the predictors. In order to accurately assess the predictive performance of these methods, we construct spatially clustered holdouts to mimic the observed patterns of missing data. Finally, we assess whether gap-filling AOD through one of the proposed ensemble methods can improve prediction of PM2.5 in a random forest model. Our results suggest that ensemble methods of combining lattice kriging and random forest can improve AOD gap-filling. Based on summary metrics of performance, PM2.5 predictions based on random forest models were largely similar regardless of the inclusion of gap-filled AOD, but there was some variability in daily model predictions.

Funder

National Aeronautics and Space Administration

Jet Propulsion Laboratory

National Institute of Environmental Health Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3