Abstract
The Flexible Microwave Payload-2 is the GNSS-R and L-band Microwave Radiometer Payload on board 3Cat-5/A, one of the two 6-unit CubeSats of the FSSCat mission, which were successfully launched on 3 September 2020 on Vega flight VV16. The instrument occupies nearly a single unit of the CubeSat, and its goal is to provide sea-ice extension and thickness over the poles, and soil moisture maps at low-moderate resolution over land, which will be downscaled using data from Cosine Hyperscout-2 on board 3Cat-5/B. The spacecrafts are in a 97.5° inclination Sun-synchronous orbit, and both the reflectometer and the radiometer have been successfully executed and validated over both the North and the South poles. This manuscript presents the results and validation of the first data sets collected by the instrument during the first two months of the mission. The results of the validation are showing a radiometric accuracy better than 2 K, and a sensitivity lower than the Kelvin. For the reflectometer, the results are showing that the sea-ice transition can be estimated even at short integration times (40 ms). The presented results shows the potential for Earth Observation missions based on CubeSats, which temporal and spatial resolution can be further increased by means of CubeSat constellations.
Funder
European Space Agency
Ministerio de Ciencia, Innovación y Universidades
Generalitat de Catalunya
Subject
General Earth and Planetary Sciences
Reference47 articles.
1. Vega Flight VV16 Launch Kit (PDF)https://www.arianespace.com/wp-content/uploads/2020/06/VV16-launchkit-EN3.pdf
2. Fsscat, the 2017 Copernicus Masters’ “Esa Sentinel Small Satellite Challenge” Winner: A Federated Polar and Soil Moisture Tandem Mission Based on 6U Cubesats
3. Hyperscout from Cosine Websitehttps://hyperscout.nl/
4. The CYGNSS nanosatellite constellation hurricane mission
5. Cyclone GNSS Mission Description Websitehttps://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cygnss
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献