Spectral Emissivity (SE) Measurement Uncertainties across 2.5–14 μm Derived from a Round-Robin Study Made across International Laboratories

Author:

Langsdale MaryORCID,Wooster MartinORCID,Harrison Jeremy,Koehl Michael,Hecker ChristophORCID,Hook Simon,Abbott Elsa,Johnson William,Maturilli Alessandro,Poutier LaurentORCID,Lau IanORCID,Brucker Franz

Abstract

Information on spectral emissivity (SE) is vital when retrieving and evaluating land surface temperature (LST) estimates from remotely sensed observations. SE measurements often come from spectral libraries based upon laboratory spectroscopic measurements, with uncertainties typically derived from repeated measurements. To go further, we organised a “round-robin” inter-comparison exercise involving SE measurements of three samples collected at seven different international laboratories. The samples were distilled water, which has a uniformly high spectral emissivity, and two artificial samples (aluminium and gold sheets laminated in polyethylene), with variable emissivities and largely specular and Lambertian characteristics. Large differences were observed between some measurements, with standard deviations over 2.5–14 μm of 0.092, 0.054 and 0.028 emissivity units (15.98%, 7.56% and 2.92%) for the laminated aluminium sheet, laminated gold sheet and distilled water respectively. Wavelength shifts of up to 0.09 μm were evident between spectra from different laboratories for the specular sample, attributed to system design interacting with the angular behaviour of emissivity. We quantified the impact of these SE differences on satellite LST estimation and found that emissivity differences resulted in LSTs differing by at least 3.5 K for each artificial sample and by more than 2.5 K for the distilled water. Our findings suggest that variations between SE measurements derived via laboratory setups may be larger than previously assumed and provide a greater contribution to LST uncertainty than thought. The study highlights the need for the infrared spectroscopy community to work towards standardized and interlaboratory comparable results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3