Examination of the Daily Cycle Wind Vector Modes of Variability from the Constellation of Microwave Scatterometers and Radiometers

Author:

Turk Francis Joseph,Hristova-Veleva SvetlaORCID,Giglio Donata

Abstract

Offshore of many coastal regions, the ocean surface wind varies in speed and direction throughout the day, owing to forcing from land/sea temperature differences and orographic effects. Far offshore, both diurnal and semidiurnal wind vector variability has been noted in the Tropical Atmosphere Ocean-TRIangle Trans-Ocean buoy Network (TAO-TRITON) mooring data in the tropical Pacific Ocean. In this manuscript, the tropical diurnal wind variability is examined with microwave radiometer-derived winds from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM), merged with RapidScat and other scatterometer data. Since the relationship between wind speed and its zonal and meridional components is nonlinear, this manuscript describes an observationally based methodology to merge the radiometer and scatterometer-based wind estimates as a function of observation time, to generate a multi-year dataset of diurnal wind variability. Compared to TAO-TRITON mooring array data, the merged satellite-derived wind components fairly well replicate the semidiurnal zonal wind variability over the tropical Pacific but generally show more variability in the meridional wind components. The meridional component agrees with the associated mooring location data in some locations better than others, or it shows no clear dominant diurnal or semidiurnal mode. Similar discrepancies are noted between two forecast model reanalysis products. It is hypothesized that the discrepancies amongst the meridional winds are due to interactions between surface convergence and convective precipitation over tropical ocean basins.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3