Deep Learning Based Thin Cloud Removal Fusing Vegetation Red Edge and Short Wave Infrared Spectral Information for Sentinel-2A Imagery

Author:

Li JunORCID,Wu Zhaocong,Hu ZhongwenORCID,Li Zilong,Wang Yisong,Molinier MatthieuORCID

Abstract

Thin clouds seriously affect the availability of optical remote sensing images, especially in visible bands. Short-wave infrared (SWIR) bands are less influenced by thin clouds, but usually have lower spatial resolution than visible (Vis) bands in high spatial resolution remote sensing images (e.g., in Sentinel-2A/B, CBERS04, ZY-1 02D and HJ-1B satellites). Most cloud removal methods do not take advantage of the spectral information available in SWIR bands, which are less affected by clouds, to restore the background information tainted by thin clouds in Vis bands. In this paper, we propose CR-MSS, a novel deep learning-based thin cloud removal method that takes the SWIR and vegetation red edge (VRE) bands as inputs in addition to visible/near infrared (Vis/NIR) bands, in order to improve cloud removal in Sentinel-2 visible bands. Contrary to some traditional and deep learning-based cloud removal methods, which use manually designed rescaling algorithm to handle bands at different resolutions, CR-MSS uses convolutional layers to automatically process bands at different resolution. CR-MSS has two input/output branches that are designed to process Vis/NIR and VRE/SWIR, respectively. Firstly, Vis/NIR cloudy bands are down-sampled by a convolutional layer to low spatial resolution features, which are then concatenated with the corresponding features extracted from VRE/SWIR bands. Secondly, the concatenated features are put into a fusion tunnel to down-sample and fuse the spectral information from Vis/NIR and VRE/SWIR bands. Third, a decomposition tunnel is designed to up-sample and decompose the fused features. Finally, a transpose convolutional layer is used to up-sample the feature maps to the resolution of input Vis/NIR bands. CR-MSS was trained on 28 real Sentinel-2A image pairs over the globe, and tested separately on eight real cloud image pairs and eight simulated cloud image pairs. The average SSIM values (Structural Similarity Index Measurement) for CR-MSS results on Vis/NIR bands over all testing images were 0.69, 0.71, 0.77, and 0.81, respectively, which was on average 1.74% higher than the best baseline method. The visual results on real Sentinel-2 images demonstrate that CR-MSS can produce more realistic cloud and cloud shadow removal results than baseline methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3