Improving Mechanical Properties of Co-Cr-Fe-Ni High Entropy Alloy via C and Mo Microalloying

Author:

Lv Yukun1,Guo Yangyang1,Zhang Jie1,Lei Yutian1,Song Pingtao1,Chen Jian1

Affiliation:

1. School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

The as-cast [Co40Cr25(FeNi)35−yMoy]100−xCx (x = 0, 0.5, y = 3, 4, 5 at.%) HEAs (high-entropy alloys) were prepared by a vacuum arc melting furnace and were then hot rolled. The effect of C and Mo elements on the microstructure evolution and mechanical properties of HEAs was systematically analyzed. The results showed that when no C atoms were added, the HEAs consisted of FCC + HCP dual-phase structure. In addition, as the Mo content increased, the grain size of the alloy increased from 17 μm to 47 μm. However, only the FCC phase appeared after adding 0.5 at.% carbon in Mo microalloyed HEAs, and the grain size of the Mo4C0.5 HEA decreased significantly. Due to the Mo atom content exceeding the solid solution limit, the carbides of Mo combined with the C element appeared in the Mo5C0.5 HEA. The strength of C and Mo microalloyed HEAs significantly increased compared to HEAs with no C added. However, the Mo4C0.5 HEA exhibited excellent comprehensive mechanical properties, which was superior to a majority of reported HEAs and conventional metal alloys. Its yield strength, tensile strength, and elongation were 757 MPa, 1186 MPa, and 69%, respectively. The strengthening mechanism was a combination of fine grain strengthening, TWIP effect, and solid solution strengthening.

Funder

National Key Research and Development Program of China

High Level Talent Special Support Program Science and Technology Innovation Leading Talent Project of Shaanxi Provincial, The Key Research Plan Projects in Shaanxi Province

Special Research Plan of the Department of Education of Shaanxi Province

The Research Plan Projects in Weinan city

Aeronautical Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3