Mechanism Analysis for the Enhancement of Low-Temperature Impact Toughness of Nodular Cast Iron by Heat Treatment

Author:

Zhuang Huanyu12,Shen Jiahui1,Yu Minhua3,An Xulong12ORCID,Hu Jing12ORCID

Affiliation:

1. Jiangsu Key Laboratory of Materials Surface Science and Technology, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China

2. Huaide College, Changzhou University, Jingjiang 214500, China

3. Integrated Management Department, Jiangsu Shuangliang Boiler Co., Ltd., Jiangyin 214444, China

Abstract

The low-temperature impact toughness of nodular cast iron can be significantly enhanced by heat treatment, and thus meet the severe service requirements in the fields of high-speed rail and power generation, etc. In order to explore the enhancement mechanism, microstructure, hardness, composition and other characteristics of as-cast and heat-treated nodular cast iron is systematically tested and compared by optical microscopy, microhardness tester, EBSD, SEM, electron probe, and impact toughness testing machine in this study. The results show that heat treatment has little effect on the morphology and size of graphite in nodular cast iron, ignores the effect on the grain size, morphology, and distribution of ferritic matrix, and has little effect on the hardness and exchange of elements, while it is meaningful to find that heat treatment brings about significant decrease in high-angle grain boundaries (HAGB) between 59° and 60°, decreasing from 10% to 3%. Therefore, the significant enhancement of low-temperature impact toughness of nodular cast iron by heat treatment may result from the obvious decrease in HAGB between 59° and 60°, instead of other reasons. From this perspective, the study can provide novel ideas for optimizing the heat treatment process of nodular cast iron.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Young Scholars of Jiangsu Province

National Natural Science Foundation for Young Scholars of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Top-notch Academic Program Projects of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3