Synthesis and Characterization of Cellulose Microfibril-Reinforced Polyvinyl Alcohol Biodegradable Composites

Author:

Boroujeni Fatemeh Mahdiyeh1,Fioravanti Gabriella1ORCID,Kander Ronald1ORCID

Affiliation:

1. School of Design and Engineering, Kanbar College, Thomas Jefferson University, Philadelphia, PA 19144, USA

Abstract

The pursuit of an environmentally sustainable manufacturing process requires the substitution of less damaging and recyclable solutions for harmful reagents. This study aims to assess the effectiveness of using cellulose microfibrils synthesized via different hydrolysis reactions as reinforcing agents in polyvinyl alcohol (PVA) at varying concentrations. The investigation explores the morphology, thermal properties, and chemical behavior of the cellulose particles. The cellulose microfibrils (CMFs) produced using citric acid exhibited the highest yield and aspect ratio. Notably, particles from organic acids demonstrated greater thermal stability, with oxalic acid-derived particles displaying the maximum thermal degradation temperature. Subsequently, cast films of PVA reinforced with the cellulose microfibrils underwent comprehensive analyses, including Fourier transfer infrared (FTIR) spectroscopy, thermal degradation temperature (Td), differential scanning calorimetry (DSC), and tensile strength tests. The thermal behavior of cast films experienced notable changes with the addition of cellulose particles, evidenced by increased melting and crystallinity temperatures, along with a rise in the degree of crystallinity. The incorporation of cellulose particles led to a substantial improvement in mechanical properties. Films containing CMF displayed higher Young’s modulus, and the sample incorporating 5% CMF derived from citric acid exhibited the most significant increase in modulus.

Funder

Thomas Jefferson University through a foundation grant provided by the Lambert Innovation Fund

Publisher

MDPI AG

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3