Role of Counterions and Nature of Spacer on Foaming Properties of Novel Polyoxyethylene Cationic Gemini Surfactants

Author:

Kalam Shams,Kamal Muhammad ShahzadORCID,Patil Shirish,Hussain S. M. Shakil

Abstract

Application of foam in various upstream operations, such as in enhanced oil recovery, has gained significant attention in recent years. A good foaming agent should generate a stable foam, must be thermally stable (>90 °C, typical reservoir temperature), must have a high tolerance to salinity, and should have low adsorption on the reservoir rock. In view of this, four thermally stable and salt-tolerant polyoxyethylene cationic gemini surfactants were synthesized with different spacers (mono phenyl and biphenyl) and different counterions (Br− and Cl−). Foaming properties were evaluated using initial foam generation, foam volume stability at a given time, bubble count, and average foam bubble radius. The effect of counterions and nature of spacers, with and without the presence of salts, on foaming properties was evaluated. It was found that number of phenyl rings (mono phenyl and biphenyl) had no significant effect on foamability and foam stability in the presence or absence of salts. However, the effect of counterions was prominent in deionized water. In deionized water, foam generated by gemini surfactants with bromide as a counterion was more stable compared to the foam generated using the surfactant containing chloride as the counterion. In saline solution, the type of counterion had no effect on the foamability or foam stability of the foam generated using synthesized cationic gemini surfactants. The foam volume stability decreased by the addition of salts; however, a further increase in salt concentration enhanced the foam volume stability. The synthesized surfactants showed good thermal stability, salt tolerance, and foaming properties and can be an attractive choice for upstream applications.

Funder

King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3