Author:
Li Kai,Xu Pan,Chen Xiaoxiao,Li Peijun,Pu Yuewu
Abstract
Mariculture wastewater is one of the main sources of saline wastewater. This study used a waterfall aeration biofilm reactor combined with a sequencing batch reactor (WABR-SBR) to treat simulated mariculture sewage. Despite the high inhibition by salinity, the reactor maintained a high removal efficiency for organic matter and ammonium nitrogen. The ammonia nitrogen removal rate was greater than 99%, while that for nitrite, which is extremely toxic to farmed animals, was greater than 80%. Fourier transform infrared spectroscopy and scanning electron microscopy showed that salinity affected the surface structure and composition of biofilms, which became compact and secreted more solute to resist the impact of salinity. High throughput 16S rRNA sequencing revealed that the main phyla in the biofilms were Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. Metagenomic annotation of genes further indicated nitrogen metabolism pathways under high salinity. The conclusions of this study can provide a theoretical foundation for the biological treatment of high-salt wastewater and provide a technical reference for further application of the WABR-SBR composite system.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献