On the Nash Equilibria of a Duel with Terminal Payoffs

Author:

Kehagias Athanasios1

Affiliation:

1. Department of Electrical and Computer Engineering, Aristotle University, 54124 Thessaloniki, Greece

Abstract

We formulate and study a two-player duel game as a terminal payoffs stochastic game. Players P1,P2 are standing in place and, in every turn, each may shoot at the other (in other words, abstention is allowed). If Pn shoots Pm (m≠n), either they hit and kill them (with probability pn) or they miss and Pm is unaffected (with probability 1−pn). The process continues until at least one player dies; if no player ever dies, the game lasts an infinite number of turns. Each player receives a positive payoff upon killing their opponent and a negative payoff upon being killed. We show that the unique stationary equilibrium is for both players to always shoot at each other. In addition, we show that the game also possesses “cooperative” (i.e., non-shooting) non-stationary equilibria. We also discuss a certain similarity that the duel has to the iterated Prisoner’s Dilemma.

Publisher

MDPI AG

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Reference35 articles.

1. Gardner, M. (1966). New Mathematical Puzzles and Diversions, Simon and Schuster.

2. Kinnaird, C. (1946). Encyclopedia of Puzzles and Pastimes, Grosset & Dunlap.

3. A Dart Game;Larsen;Am. Math. Mon.,1948

4. Mosteller, F. (1987). Fifty Challenging Problems in Probability with Solutions, Courier Corporation.

5. Shubik, M. (1954). Readings in Game Theory and Political Behavior, Doubleday.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3