Sensing-Efficient Transmit Beamforming for ISAC with MIMO Radar and MU-MIMO Communication

Author:

Liu Huimin1ORCID,Li Yong1ORCID,Cheng Wei1ORCID,Dong Limeng1ORCID,Yan Beiming1

Affiliation:

1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

We focus on an integrated sensing and communication (ISAC) system—a single platform equipped with multiple antennas transmitting a waveform to detect targets and communicate with downlink users. Due to spectrum sharing between multiple-input–multiple-output (MIMO) radar and multiuser MIMO (MU-MIMO) communication, beamforming is becoming increasingly important as a technique that enables the creation of directional beams. In this paper, we propose a novel joint transmit beamforming design scheme that employs a beam pattern approximation strategy for radar sensing and utilizes rate-splitting for multiuser communication offering advanced interference management strategies. The optimization problems are formulated from both radar-centric and trade-off viewpoints. First, we propose a radar-centric beamforming scheme to achieve sensing efficiency through beam pattern approximation, while requiring the fairness signal-to-interference-plus-noise ratio (SINR) to be higher than a given threshold to guarantee a minimal level of communication quality, while the obtained performance for the communication system is limited in this scheme. To address this problem, we propose a beamforming design scheme from a trade-off viewpoint that flexibly optimizes both sensing and communication performances with a regularization parameter. Finally, we propose a partial rate-splitting-based beamforming design method aimed at maximizing the effective sensing power, with the constraint of a minimal sum rate for downlink users. Numerical results are provided to assess the effectiveness of all proposed schemes.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3