Extraction of Spatiotemporal Information of Rainfall-Induced Landslides from Remote Sensing

Author:

Zeng Tongxiao1,Zhang Jun1,Chen Yulin1,Zhu Shaonan2

Affiliation:

1. Key Laboratory of VGE of Ministry of Education, Nanjing Normal University, Nanjing 210023, China

2. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

With global climate change and increased human activities, landslides increasingly threaten human safety and property. Precisely extracting large-scale spatiotemporal information on landslides is crucial for risk management. However, existing methods are either locally based or have coarse temporal resolution, which is insufficient for regional analysis. In this study, spatiotemporal information on landslides was extracted using multiple remote sensing data from Emilia, Italy. An automated algorithm for extracting spatial information of landslides was developed with NDVI datasets. Then, we established a landslide prediction model based on a hydrometeorological threshold of three-day soil moisture and three-day accumulated rainfall. Based on this model, the locations and dates of rainfall-induced landslides were identified. Then, we further matched these identified locations with the extracted landslides from remote sensing data and finally determined the occurrence time. This approach was validated with recorded landslides events in Emilia. Despite some temporal clustering, the overall trend matched historical records, accurately reflecting the dynamic impacts of rainfall and soil moisture on landslides. The temporal bias for 87.3% of identified landslides was within seven days. Furthermore, higher rainfall magnitude was associated with better temporal accuracy, validating the effectiveness of the model and the reliability of rainfall as a landslide predictor.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3