Wavelength Cut-Off Error of Spectral Density from MTF3 of SWIM Instrument Onboard CFOSAT: An Investigation from Buoy Data

Author:

Luo Yuexin123,Xu Ying2ORCID,Qin Hao34,Jiang Haoyu124ORCID

Affiliation:

1. College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China

2. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China

3. College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China

4. Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China

Abstract

The Surface Waves Investigation and Monitoring instrument (SWIM) provides the directional wave spectrum within the wavelength range of 23–500 m, corresponding to a frequency range of 0.056–0.26 Hz in deep water. This frequency range is narrower than the 0.02–0.485 Hz frequency range of buoys used to validate the SWIM nadir Significant Wave Height (SWH). The modulation transfer function used in the current version of the SWIM data product normalizes the energy of the wave spectrum using the nadir SWH. A discrepancy in the cut-off frequency/wavelength ranges between the nadir and off-nadir beams can lead to an overestimation of off-nadir cut-off SWHs and, consequently, the spectral densities of SWIM wave spectra. This study investigates such errors in SWHs due to the wavelength cut-off effect using buoy data. Results show that this wavelength cut-off error of SWH is small in general thanks to the high-frequency extension of the resolved frequency range. The corresponding high-frequency cut-off errors are systematic errors amenable to statistical correction, and the low-frequency cut-off error can be significant under swell-dominated conditions. By leveraging the properties of these errors, we successfully corrected the high-frequency cut-off SWH error using an artificial neural network and mitigated the low-frequency cut-off SWH error with the help of a numerical wave hindcast. These corrections significantly reduced the error in the estimated cut-off SWH, improving the bias, root-mean-square error, and correlation coefficient from 0.086 m, 0.111 m, and 0.9976 to 0 m, 0.039 m, and 0.9994, respectively.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China,

Key Laboratory of Space Ocean Remote Sensing and Application, MNR

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3